Ion Transport in Electrically Imperfect Nanopores

Yechan Noh and Narayana R. Aluru*

Cite This: ACS Nano 2020, 14, 10518–10526

ABSTRACT: Ionic transport through a charged nanopore at low ion concentration is governed by the surface conductance. Several experiments have reported various power-law relations between the surface conductance and ionic concentration, i.e., $G_{\text{surf}} \propto c_0^\alpha$. However, the physical origin of the varying exponent, α, is not yet clearly understood. By performing extensive coarse-grained Molecular Dynamics simulations for various pore diameters, lengths, and surface charge densities, we observe varying power-law exponents even with a constant surface charge and show that α depends on how electrically “perfect” the nanopore is. Specifically, when the net charge of the solution in the pore is insufficient to ensure electroneutrality, the pore is electrically “imperfect” and such nanopores can exhibit varying α depending on the degree of “imperfectness”. We present an ionic conductance theory for electrically “imperfect” nanopores that not only explains the various power-law relationships but also describes most of the experimental data available in the literature.

KEYWORDS: ion transport, nanopore, power-law, ion conductance, ion selectivity, surface charge, molecular dynamics

The distinctive characteristics of micro- and nanoscale ion transport have been utilized extensively for various applications in science and engineering. The surface-charge-governed ion transport theory has been used, in conjunction with experimental ionic conductance data at low concentration, to estimate the surface charge density of a nanopore/channel. Furthermore, the dimensions of the nanoscale conduit, which are not easy to measure due to their tiny scale, have been determined by using the ion-transport theory on measured current data. The molecular-level sensitivity of ion transport through an ultranathin nanopore has greatly contributed to advances in DNA sequencing and translocation technologies. Biological organisms take advantage of selective ion transport to maintain metabolism. Molecular scale separation of ions have also been actively studied. Despite the importance of ion-transport phenomena, there is still a considerable knowledge gap in the scaling behavior of ion conductance (the power-law relation between conductance and concentration is given by, $G \propto c_0^\alpha$). Generally, at high ionic concentration, the ion transport is governed by the bulk transport mechanism where the exponent $\alpha = 1$ holds. On the other hand, at low concentration, the ion transport is dominated by the surface transport mechanism. In this regime, various scaling laws ($0 \leq \alpha \leq 1$) have been reported in different experimental settings over the past few years. However, the physical origins of the various scaling laws are not clearly understood.

The scaling behavior of ion transport has been studied extensively since the cornerstone work done by Stein et al. In this work, the conductance saturation ($\alpha \approx 0$) was observed in silica oxide micronano channels. They have shown that at low concentrations the ion transport is dominated by counterions accumulated near the charged surface to maintain electroneutrality. In subsequent work, Smeets et al. observed that the conductance does not saturate ($\alpha \sim 0.3$) in their silica oxide nanopores. This non-zero exponent was explained by a variable-charge model (referred to as charge regulation) where the surface charge density was considered to change as a function of ion concentration in reservoir. Secchi et al. observed that the conductance in CNTs exhibited $\sim 1/3$ scaling law for all the tested diameters ($3.5 \text{ nm} \sim 35 \text{ nm}$) and pH ($4 \sim 10$). They also suggested charge regulation as a possible interpretation of this scaling law and derived the $\alpha = 1/3$ scaling law using the Gouy–Chapman model.

Received: May 28, 2020
Accepted: July 28, 2020
Published: July 28, 2020
Similarly, Biesheuvel and Bazant20 derived the power law, $\alpha = 1/2$, by using charge regulation with Langmuir isotherm. Uematsu et al.21 showed that the crossover among the power-laws ($\alpha = 0$, $1/3$ and $1/2$) depends on the ion concentration and pH. Manghi et al.22 analytically arrived at the scaling of $\alpha = 1/2$, $1/3$, and $2/3$ by introducing charge regulation and slip. However, not only those exponents, almost any power-law exponent ranging from $0 \leq \alpha < 1$ have been observed in prior studies on graphene nanopores, graphene Al$_2$O$_3$ pores,23–25 silica nitride pores,26 silica oxide nanochannels/pores,16,28,29 CNT,17,30 wCNTPs,31 and biological nanopores.32 To elucidate the physical origin of the various exponents, we performed extensive coarse-grained MD simulations where explicit ions and implicit solvent are used. The results show that depending on the geometry of the pore, the electroneutrality in the pore region may not be satisfied and the electrical potential in the pore due to surface charge leaks into the reservoir. Considering the leakage of surface potential, we develop an ion conductance theory that describes the various power-law exponents and the theory is shown to accurately predict MD as well as experimental data.

RESULTS AND DISCUSSION

Electrophoretic Conductance and Access Resistance.

The ionic conductance through a charged nanopore is enhanced, when compared to the bulk conductance, due to the diffuse layer transport near the pore surface. In a cylindrical pore with a 1:1 electrolyte and $\mu = \mu_+ = \mu_-$, the enhanced electrophoretic transport can be modeled as

$$G_{ph} = 2F\sigma \mu \sqrt{1 + \frac{L^2}{\pi R^2}},$$

where F is the Faraday constant, μ is the ion mobility (in m2 s$^{-1}$ V$^{-1}$), c_0 is the reservoir concentration (in mol·m$^{-3}$), L is the length of the pore, and R is the pore radius. Equation 1 can be derived from the space-charge (SC) theory with Donnan equation or from the electrochemical equilibrium (the mean-field Poisson–Boltzmann theory) with the electroneutrality assumption in the pore. We introduce a dimensionless number $\tilde{\sigma}$ as the ratio between the net charge concentration required in the pore for electroneutrality and the charge concentration of the bulk solution, i.e.,

$$\tilde{\sigma} = \frac{q_+ c_0 + q_- c_0}{q_+ - q_- c_0},$$

where q_\pm is the charge of cation/anion, and c_0 is the ensemble averaged concentration of cation/anion for the electrically neutral (EN) condition. For a 1:1 electrolyte and homogeneous charge distribution in a cylindrical pore, the dimensionless parameter can be rewritten as

$$\tilde{\sigma} = -\frac{\sigma}{F c_0 R},$$

where σ is the surface charge density (in C/m2). Note that the Dukhin number,27,35,37 $Du = \frac{\kappa_{surf}}{\kappa_{bulk}}$, is equal to $|\tilde{\sigma}|$ when electroosmosis is ignored, where κ_{surf} is the surface conductivity and κ_{bulk} is the bulk conductivity. The sign of $\tilde{\sigma}$ is the opposite sign of surface charge, and this facilitates consideration of the direction of surface current. The absolute value of $\tilde{\sigma}$ provides an important interpretation of the ion-transport mechanism.

Figure 1. Ionic conductance versus reservoir ion concentration (G-c$_0$ curve). In (A) and (B), the pore length is varied, and the diameter and surface charge density are fixed, $D = 5.1$ nm and $\sigma = -50$ mC/m2. In (C), diameter is varied and the pore length and surface charge density are fixed, $L = 20$ nm and $\sigma = -50$ mC/m2. In (D), the surface charge density is varied and pore length and diameter are fixed, $L = 20$ nm and $D = 5.1$ nm. As shown in the inset, only the pore surface is assumed to be charged in (A, C, and D) and both the pore and membrane surface are assumed to be charged in (B). The best-fit curves of eq 11 to the MD data sets are obtained by fitting α.

RESULTS AND DISCUSSION

Electrophoretic Conductance and Access Resistance.

The ionic conductance through a charged nanopore is enhanced, when compared to the bulk conductance, due to the diffuse layer transport near the pore surface. In a cylindrical pore with a 1:1 electrolyte and $\mu = \mu_+ = \mu_-$, the enhanced electrophoretic transport can be modeled as

$$G_{ph} = 2F\sigma \mu \sqrt{1 + \frac{L^2}{\pi R^2}},$$

where F is the Faraday constant, μ is the ion mobility (in m2 s$^{-1}$ V$^{-1}$), c_0 is the reservoir concentration (in mol·m$^{-3}$), L is the length of the pore, and R is the pore radius. Equation 1 can be derived from the space-charge (SC) theory with Donnan equation or from the electrochemical equilibrium (the mean-field Poisson–Boltzmann theory) with the electroneutrality assumption in the pore. We introduce a dimensionless number $\tilde{\sigma}$ as the ratio between the net charge concentration required in the pore for electroneutrality and the charge concentration of the bulk solution, i.e.,

$$\tilde{\sigma} = \frac{q_+ c_0 + q_- c_0}{q_+ - q_- c_0},$$

where q_\pm is the charge of cation/anion, and c_0 is the ensemble averaged concentration of cation/anion for the electrically neutral (EN) condition. For a 1:1 electrolyte and homogeneous charge distribution in a cylindrical pore, the dimensionless parameter can be rewritten as

$$\tilde{\sigma} = -\frac{\sigma}{F c_0 R},$$

where σ is the surface charge density (in C/m2). Note that the Dukhin number,27,35,37 $Du = \frac{\kappa_{surf}}{\kappa_{bulk}}$, is equal to $|\tilde{\sigma}|$ when electroosmosis is ignored, where κ_{surf} is the surface conductivity and κ_{bulk} is the bulk conductivity. The sign of $\tilde{\sigma}$ is the opposite sign of surface charge, and this facilitates consideration of the direction of surface current. The absolute value of $\tilde{\sigma}$ provides an important interpretation of the ion-transport mechanism.
When $|\psi| \ll 1$ (generally at high c_0), eq 1 reduces to the bulk conductivity limit, i.e., $\kappa_{\text{bulk}} = 2FC_d\mu$. When $|\psi| \gg 1$ (generally at low c_0), eq 1 reduces to the surface-charge-governed conductivity limit, i.e., $\kappa_{\text{surf}} = \frac{|\psi|}{c_0}k_F$ which is independent of the reservoir concentration.\(^1\) The summation of these two limits of eq 1 is taken to be the electrophoretic conductance as suggested by earlier works:\(^2\)\(^3\)\(^8\)\(^9\)

$$G_{\text{ph}} \approx G_{\text{bulk}} + G_{\text{surf}} = 2FC_d\mu(1 + |\psi|)\left(\frac{L}{\pi R^2}\right)^{-1}$$

Equation 3 provides insights into bulk and surface transport mechanisms. Nonetheless, eq 1, where the bulk and surface transport occur as a coupled mechanism, is physically accurate compared to eq 3, where the bulk and surface transport are decoupled and assumed to be independent of each other. Both eq 1 and eq 3 are reasonably accurate for long ($L \gg R$) nanopores where the access resistance is negligible. For nanopores with $L \sim R$, the access resistance needs to be included in the conductance model. The access resistance can be modeled by the Maxwell–Hall (MH) access resistance,

$$R_{\text{MH}} = \frac{1}{2\kappa R^2}\text{,}$$

where k is the conductivity. By introducing the MH access resistance, the electrophoretic conductance can be written as

$$G_{\text{ph}} = 2FC_d\mu\sqrt{1 + \frac{\kappa^3}{\pi^2} \left(\frac{L}{2R}\right)^{-1}}$$

We can also simply express the conductance as

$$G = k\left(\frac{L}{2R} + \frac{1}{2R}\right)^{-1}.\text{24,43,44}$$

Note that eq 4 reduces to eq 1 in the limit of $L \gg R$. We compared the model in eq 4 with MD simulations using implicit water for various pore geometries and surface charges. The surface charge density in MD is assumed to be constant with respect to the reservoir concentration; i.e., no charge regulation is used. The details of the coarse-grained MD simulations are given in the Methods. Note that both eq 4 and the coarse-grained MD simulation only consider the electrophoretic ion transport. Figure 1 shows that eq 4 agrees well with the MD data only in the bulk transport dominant regime $c_0 \gg \frac{|\psi|}{k_F}$ (i.e., $c_0 \gg 0.23$ M for the cases in Figure 1A). Note that if the access resistance is omitted (i.e., eq 1), the model does not accurately predict the bulk conductance for short pores ($L \lesssim R$) (see Figure S1). In the regime where the surface conductance is dominant ($c_0 \ll \frac{|\psi|}{k_F}$), eq 4 deviates from the MD data. These discrepancies are greater for short pores (L is small). For a constant surface charge, the conductance model in eq 4 predicts the conductance saturation ($G = \text{constant}$) at low c_0. According to MD simulation, however, even at low concentration, the conductance decreases continuously as the reservoir concentration decreases following the power-law, $G_{\text{surf}} \propto c_0^{\alpha}$ (i.e., linear log(G) − log(c_0) curve).

Electrophoretic Conductance with Electric-Potential Leakage. To understand the physical origin of the various power-law exponents, we examined if electroneutrality is maintained in the pore as assumed in eq 4. Figure 2 shows the distribution of the net charge of solution along the axial coordinate of the pore normalized by the pore length. In all of the tested cases, the net charge of solution in the pore is insufficient to maintain the electroneutral condition, $\langle c_+ \rangle_{\text{EN}} - \langle c_- \rangle_{\text{EN}} = 2c_0\psi$. This deficiency of net charge is worse at the pore edges. Similar phenomena, referred to as charge overspill, end effects, and electroneutrality breakdown, have been reported.\(^45\)\(^–\)\(^47\) It should be noted that the lack of electroneutrality in the pore region does not indicate that the electroneutrality of the whole system fails. The electroneutrality of the entire system is maintained by the combination of the net charge of solution in the pore and that of in the reservoir. The physical origin of the net charge deficiency in the pore is the leakage of the surface-electric-potential (electric potential due to the surface charge density of the pore) into the reservoir, where the leaked electric potential does not contribute to the surface conductance. To incorporate the leakage of surface-electric-potential into the conductance model, the electrochemical equilibrium between the reservoir and pore is considered, for a 1:1 electrolyte, as

$$\zeta_\pm + k_B T \log c_0 = \zeta_\pm + k_B T \log (c_\pm) \pm \psi_p$$

where ζ_\pm is the chemical potential of cation (ζ_+) and anion (ζ_-), k_B is the Boltzmann constant, T is the temperature, $\langle c_\pm \rangle_p$ is the ensemble averaged concentration of cation/anion in the pore without electroneutrality assumption, and ψ_p is the mean potential in the pore. First, if there is no leakage of surface-electric potential, the mean potential ψ_p is equal to the Donnan potential, ψ_D. From eq 5 and the electroneutrality condition, the Donnan potential is described as\(^35\)

$$\psi_D = \frac{k_B T}{e} \log(\sqrt{1 + \sigma^2 - \bar{\sigma}})$$

If the surface-electric potential leaks, the mean potential in the pore is smaller than the Donnan potential, $\psi_p < \psi_D$.\(^38\) In this case, the pore potential can be modeled as

$$\psi_p \equiv (1 - \alpha)\psi_D$$

where α is the fraction of the surface-electric potential that leaks out of the pore: $\alpha = 0$ means no leakage and $\alpha = 1$ means perfect leakage. Combining eqs 5–7, the ensemble averaged concentration in the pore is derived as

$$\langle c_\pm \rangle_p = c_0(\sqrt{1 + \sigma^2} \pm \bar{\sigma})^{1-\alpha}$$

The electrophoretic conductivity is given by

$$G_{\text{ph}} \approx F(\mu_+\langle c_+ \rangle_p + \mu_-\langle c_- \rangle_p)$$
The mean-field approximation in eq 9 is acceptable for pores with diameters larger than 3 nm and for moderate surface charge where the mobility of ions is nearly invariant near the surface. The mobility of ions in highly confined pores is typically lower than the bulk value. However, this effect can usually be neglected for pores larger than 3 nm. Under these assumptions, modeling the pore conductivity can be simplified into modeling ion concentration in the pore. From eqs 8 and 9, the nanopore conductivity is given by

$$\kappa_{ph} = F_c(\mu_0(1 + \sigma^2 + \sigma)^{1-a} + \mu(1 + \sigma^2 - \sigma)^{1-a})$$

The conductivity model presented in eq 10 includes two types of transport mechanisms in a coupled form; one is bulk transport, where $\kappa_{bulk} \propto c_0$ and the other is the surface transport, where $\kappa_{surf} \propto c_0^\alpha$ (see Figure 3A). In the case $\alpha = 0$ (electrically perfect nanopore), the conductivity saturates as reservoir concentration decreases. If $\alpha = 0$ (no surface-electric potential is present in the pore), eq 10 reduces to the bulk conductivity. Similarly, if there is no surface charge, $c_0 = 0$, eq 10 reduces to the bulk conductivity. The absolute value of the surface charge density, $|\sigma|$, is proportional to the magnitude of the surface conductivity (see Figure 3B). The conductivity model presented in eq 10 fits well with the MD data for various lengths, diameters, and surface charge densities (see Figure S2).

For a cylindrical geometry, the ionic conductance can be described as the product of the geometrical parameters and ionic conductivity as $G = k\left(\frac{L}{\pi R^2} + \frac{1}{2R}\right)^{-1}$. Using eq 10, the conductance can be written as

$$G_{ph} = F_c(\mu_0(1 + \sigma^2 + \sigma)^{1-a} + \mu(1 + \sigma^2 - \sigma)^{1-a})\left(\frac{L}{\pi R^2} + \frac{1}{2R}\right)^{-1}$$

We note that eq 11 is a general form of conductance that can reproduce all the earlier conductance models (eqs 1, 3, and 4). Figure 1 shows that the theory given by eq 11 compares well with the MD data for various lengths, diameters, and surface charge densities. Figure 1A shows that the power-law exponent α of the surface conductance increases as the pore length decreases. Interestingly, eq 11, as well as the MD data, predict that at very low concentrations longer pores have higher conductance compared to shorter pores. Figure 1C shows that α decreases as the pore diameter decreases. Thus, the diameter and length of the pore have an opposite effect on α. Also, it is observed from MD that pores with different D and L but with the same D/L ratio have nearly the same exponent, α (see Figure S3). Therefore, it can be concluded that $\alpha \sim 1$ when $D/L \gg 1$ and $\alpha \sim 0$ when $D/L \ll 1$. This observation is consistent with earlier experimental studies on long channel/pore ($D/L \ll 1$) that have shown almost no power-law dependence ($\alpha \approx 0$) and nanopores with $D/L \gg 1$ that have shown relatively high α values. Figure 1D shows that $|\sigma|$ is proportional to the magnitude of the surface conductance, but it has little effect on α. This observation is similar to the experimental observation on pH dependence of ionic conductance, where pH value has a small effect on α but pH value is directly related to the magnitude of the surface conductance. We note that α depends not only on the pore geometry but also on how the surface charges are distributed. When both the supporting membranes and the pore surface are charged, the α values are smaller than when only the pore surface is charged (see Figure 1A,B).

For an intuitive model, we consider the summation of the two limits, bulk and surface conductance, of eq 11. At the high concentration limit, $|\sigma| \ll 1$, $G_{ph} \approx G_{bulk} = F_c(\mu_0 + \mu_0)(\frac{L}{\pi R^2} + \frac{1}{2R})^{-1}$, where μ_0 and μ_0 are the counterion and co-ion mobility. At the low concentration limit, $|\sigma| \gg 1$, $G_{ph} \approx G_{surf} = F_c\mu_0^2|\sigma|^{1-a}\left(\frac{L}{\pi R^2} + \frac{1}{2R}\right)^{-1}$. By adding these two limits, the electrophoretic conductance can be approximated as

$$G_{ph} \approx G_{bulk} + G_{surf} = F_c(1 + 2|\sigma|^{1-a})\mu_0 + \mu_0\left(\frac{L}{\pi R^2} + \frac{1}{2R}\right)^{-1}$$

The model in eq 12 provides an intuitive understanding of ion transport through a charged pore. The dimensionless term, $2|\sigma|^{1-a}$, represents the conductance enhancement due to the counterion transport in the diffuse layer. When $1 \gg 2|\sigma|^{1-a}$, the bulk transport is dominant and when $1 \ll 2|\sigma|^{1-a}$, the surface conductance is dominant. eq 12 is a reasonable approximation to eq 11 for $0 \leq \alpha \lesssim 0.7$.

Total Conductance with Electric-Potential Leakage. In addition to the bulk and diffuse layer ion transport (electrophoresis), the total conductance is also affected by the water transport driven by the ionic migration (electroosmosis). The electroosmotic flow generates an ionic current due to the net charge of solution in the pore. The electroosmotic transport can be incorporated into eq 11 by using electro-
osmotic mobility μ_{eo}. Then, the total conductance can be written as

$$G = F_c \left(\mu_+ + \mu_{eo} \right) \left(\sqrt{1 + \theta^2 - \theta} \right)^{1-\alpha} + \left(\mu_+ - \mu_{eo} \right) \left(\sqrt{1 + \theta^2 + \theta} \right)^{1-\alpha}$$

$$= \left(\sqrt{1 + \theta^2 - \theta} \right)^{1-\alpha} \left(\frac{L}{\pi R^2} + \frac{1}{2R} \right)^{-1}$$

(13)

Electroosmotic mobility enhances the counterion transport but reduces the co-ion transport. The direction of electroosmotic flow is considered in the sign of electroosmotic mobility, which is the opposite sign of the surface charge. The electroosmotic contribution to the total conductance (eq 13) can be written as

$$G_{eo} = F_c \left(\mu_{eo} \right) \left(\sqrt{1 + \theta^2 + \theta} \right)^{1-\alpha} - \left(\sqrt{1 + \theta^2 - \theta} \right)^{1-\alpha}$$

$$= \left(\sqrt{1 + \theta^2 - \theta} \right)^{1-\alpha} \left(\frac{L}{\pi R^2} + \frac{1}{2R} \right)^{-1}$$

(14)

This formulation is consistent with the fact that the electroosmotic current is generated by the net charge in the pore. At low concentration limit ($|\theta| \gg 1$), the total surface conductance (including the electroosmotic component) is given by

$$G_{surf} = F_c \mu_{eo} \left(1 + \frac{|\mu_{eo}|}{\mu_+} \right) \left(\frac{L}{\pi R^2} + \frac{1}{2R} \right)^{-1}$$

(15)

If μ_{eo} is assumed constant and independent of the reservoir concentration, G_{surf} has the same power-law exponent, α, as that of eq 11 (see Figure S4). The dimensionless parameter $\frac{|\mu_{eo}|}{\mu_+}$ is the enhancement factor in surface conductance due to the electroosmotic flow. In experimental situations, the surface charge density of the nanopore is generally unknown. Hence, the conductance theories are used to estimate the surface charge density by matching the theory with experimental conductance−concentration data set. We note that the theory with electroosmosis predicts lower $|\theta|$ than the theory without electroosmosis for a same conductance−concentration data set. We note that the theory with electroosmosis predicts lower $|\theta|$ than the theory without electroosmosis for a same conductance−concentration data set. In the expression for electroosmotic conductance suggested by Levine et al., the electroosmotic mobility is given by $|\mu_{eo}| = \frac{2eT}{\eta R}$, where η is the viscosity of the solution.

This expression for electroosmotic mobility is suitable for nonoverlapped electrical double layer (EDL) system. Similarly, the electroosmotic mobility derived by Biesheuvel and Bazant using SC theory and the Donnan equation is given by $\mu_{eo} = -eR / 4\eta$. This mobility is valid for highly overlapped EDL systems where the pore potential is almost invariant. Figure S10 shows the results from eq 13 with these
electroosmotic mobilities in comparison to all-atom MD and MD using implicit water. Those suggested electroosmotic mobilities shows a better prediction to the all-atom MD simulation. However, the electroosmotic mobility for electrically imperfect nanopore with slip is absent and further research is needed.

Ion Selectivity. For a deeper understanding of ion transport in electrically imperfect/non-neutral nanopore, the contributions of each ion are investigated. Equation 13 can be decomposed into the contributions of cations and anions, i.e.,
\[G = G^+ + G^- \]

Each contribution is given by
\[G^\pm = F\nu_0 \left(\mu^\pm \pm \mu_0 \right) \left(\sqrt{1 + \sigma^2} \pm \tilde{\sigma} \right) \left(\frac{L}{\pi R^2} + \frac{1}{2R} \right)^{-1} \]

The ion selectivity is defined as
\[S^\pm \equiv \frac{G^\pm}{G} \]

Using eqs 16 and 17, the ion selectivity can be calculated. Parts A and B of Figure 4 show the contribution of counterion and co-ion conductance to total conductance, respectively. At high concentration, both K⁺ and Cl⁻ ions contribute almost equally to the conductance. However, at low concentration the co-ion (Cl⁻) contribution decays faster than that of counterions (K⁺). As a result, at low concentration, the counterion transport governs ionic conductance. Moreover, the theory can predict the ion selectivity of nanopore. Figure 4C shows that the ion selectivity obtained from MD and theory are in good agreement, predicting that ion selectivity increases and approaches one as the concentration decreases. We note that electroosmosis is an important factor in the selective ion transport according to eqs 16 and 17 (see Figure S5).

Comparison with Experimental Data. The experimentally measured power-law exponents from various studies are shown in Figure 5A. It should be noted that physically \(\alpha \) is the fraction of the surface-electric-potential that leaks out of the pore and mathematically \(\alpha \) is the power-law exponent of surface conductivity. Most experimental data show a consistent behavior that \(\alpha \) increases as \(R/L \) increases despite varying nanopore sizes (see Figure 5B). This consistency among the various independent experimental studies support the validity of the conductance model with electrically non-neutral or imperfect pores. In addition, the consistency among different materials can be understood as the surface transport (for pore \(D \geq 3 \text{ nm} \) is governed by the electrostatic force, which is characterized by the surface charge density, \(\sigma \), in the model. The deviations observed for CNT data may imply that there could be other omitted physics. For example, the surface...
charge density of CNT immersed in the solution may depend on the reservoir concentration (charge regulation).16,17,20–22 The α values obtained from MD simulation assume an ideal case of a perfect cylindrical geometry (no mechanical and chemical defects) with a homogeneous charge distribution. In this case, α can be empirically modeled as

\[
\alpha \sim \frac{1}{\sqrt{\pi}} \left(\frac{L}{R} + \frac{1}{2} \right)^{-1/2}
\]

(18)

In practical cases, in addition to pore geometrical parameters, α can also be affected by the charge distribution. For sub-3 nm pores or a highly confined system, α can depend on the material type (e.g., SiO\textsubscript{2}, Si\textsubscript{3}N\textsubscript{4}, etc.), as at these length scales, in addition to electrostatic interactions, van der Waals interactions and the finite size of the ions also play an important role.

Finally, we tested the conductance theory for electrically imperfect nanopores given in eqs 13 and 18 with the published experimental data. For this comparison, we assumed μ\textsubscript{0} = 0 due to the absence of electroosmotic mobility for electrically imperfect nanopore as we discussed earlier. Therefore, the actual surface charge density can be lower to some extent than the estimated value. Most of the experimental data are well described by the theory we present (see Figure 6). The estimated surface charge density of Si\textsubscript{3}N\textsubscript{4} and SiO\textsubscript{2} is in a reasonable range compared to the typical value σ ∼ 20 mC/m2 and σ ∼ 100 mC/m2, respectively. In the case of small-diameter CNT, the estimated 1σ is very large at high pH. One possible explanation of this is a strong osmotic current amplified by a large slip on the hydrophobic surface. The conductance model also describes the conductance of biological nanopores that have sub-3 nm effective diameter. However, the quantitative estimation of surface charge density in sub-3 nm pore may require a comprehensive ion transport model including interfacial phenomena such as near-surface mobility/viscosity,53 van der Waals type adsorption, finite size of ion on EDL51 and wall/fluid slip.55

CONCLUSION

The net charge in the EDL near a pore surface is the source of the surface conductance. Our coarse-grained MD simulations demonstrate that various power-laws can be observed in pores with a constant surface charge. We also investigated the axial net charge distribution in the pore and conclude that there is leakage of surface-electric potential from the pore into the reservoir. By considering the electrochemical equilibrium with the electric-potential leakage, we developed an ion conductance theory that describes power-laws with exponents between zero and one. The ion conductance theory accounting for the leakage of surface-electrical-potential describes the conductance and selectivity obtained from MD simulation of nanopores of various lengths, diameters, and surface charge densities. Analysis of the published experimental and MD data reveals that the exponent of the power-law is related to the aspect ratio of the nanopore. An empirical model is proposed to describe the exponent of the power law by using MD data on a perfect cylindrical pore and homogeneous surface charge. The ion conductance theory with empirical power-law relation describes well most of the experimental data.

METHODS

For ion-transport studies, coarse-grained MD simulations were performed with implicit water and explicit ions. Utilizing implicit water enables us to perform several orders of magnitude faster ion transport studies compared to all-atom MD simulations as the number of atoms in the system are significantly reduced. The coarse-grained MD simulations implicitly consider the viscosity, thermal collision, hydration energy, distance-dependent dielectric permittivity, and therefore properly reproduces concentration dependent ion mobility, the ionic structure in the solution, and the ionic interfacial structure. The Langevin dynamics is used to generate the thermal motion of ions. The damping parameters of Langevin Dynamics are adjusted to reproduce the viscosity of the solution by matching the experimental ion mobility (for both K+ and Cl−) in a dilute solution (the Stokes’ drag of ion, η = qE/6πr, where E is electric field, r is radius of ion). We refer to an earlier study on the implicit water MD simulation done by Lenart et al.56 for distance-dependent dielectric permittivity and hydration energy correction. The distance-dependent dielectric primitivity is modeled as

\[
e_\text{pr}(r) = \frac{2 + x_0}{2} + \frac{5}{2} \tanh\left(\frac{r - r_\text{m}}{\sigma}\right),
\]

where e\textsubscript{b} is the bulk solution permittivity and r\textsubscript{m} and σ\textsubscript{e} are free parameters representing the location of the first hydration shell and the distance scale of the permittivity recovery. This model assumes that most of the bulk dielectric permittivity is recovered after the first hydration shell. The hydration energy is modeled as a Gaussian function,

\[
E_\text{hyd} = \frac{H}{\sigma_\text{e}^2 2\pi} \exp\left(\frac{(u - u_0)^2}{2\sigma_\text{e}^2}\right),
\]

where H is the intensity factor of hydration energy, u\textsubscript{0} is the mean, and σ\textsubscript{e} is the standard deviation. In the original work, these free parameters were optimized by fitting the concentration-dependent activity coefficient and radial distribution function (RDF) of cation and anion.56,57 In the present study, all free parameters were reoptimized to reproduce the concentration dependence of molar conductivity, Λ(κ), and RDFs of all ion pairs (see Figure S6 for optimization procedure). The molar conductivity and the RDFs obtained from the optimized potential are shown in Figures S7 and S8. Finally, EDL is reproduced by adjusting LJ potentials between ions and carbon (see Figure S9). The optimized force-field for implicit water and explicit ions is listed in Table S1. The benchmark study of ion transport using this potential is shown in Figure S10.

For ion-transport studies using implicit water, a nanopore and two reservoirs attached to the edges of the pore were considered. Three reservoirs of sizes 35, 50, and 70 nm cube are considered depending on the reservoir concentration (a lower concentration requires a larger reservoir). Aqueous KCl solution and a fixed cylindrical pore made of carbons is considered. The effective diameters of the pores were determined by subtracting the wall−fluid LJ diameter from the center-to-center diameter of pore. The pore surface and membranes are homogeneously charged. We applied electric potential difference in the linear regime of current−voltage curve (less than 0.5 V). For electrically neutral systems, extra counterions are added to the system.58 MD simulation is initially performed under the NVT ensemble for 20 to 100 ns with the electric field until the system reaches the steady state. Then the atomic trajectories are integrated by the NVE ensemble. The time step is set to 10 fs, and the data were obtained during 10−500 ns (lower concentrations require longer data collection times).

For all-atom MD simulations, SPC/E water59 was utilized. The bond angle and length are maintained by the SHAKE algorithm.60 The long-range Coulomb potential is computed by the PPPM method.61 The interatomic interactions among the molecular pairs are modeled by the LJ potential. We used the optimized ion force field for use with SPC/E water.62 We used the carbon−water interatomic potential to reproduce a proper contact angle.63 The rest of the atomic pair potentials are modeled by the Lorentz−Berthelot mixing rule. The force fields are summarized in Table S2. The NVT ensemble is utilized for velocity integration with 2 fs time step. Nose−Hoover
dynamics are employed to maintain the temperature by adjusting only the velocity components that are perpendicular to the electric field. The relatively small size reservoir, 15 nm, is considered due to the high computational cost of all-atom MD. The other conditions are the same as those used in the implicit water model. For short and long-range potential, GPU-accelerated calculation was utilized.64,65

The ion current is computed by counting the number of ions passing the pore. The Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS)66 is used for all simulations.

ASSOCIATED CONTENT

1 Supporting Information
The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acsnano.0c04453.

Additional details for ion conductance modeling (Figures S1–S5), the development of implicit water force field (Figures S6–S9), the benchmark study of MD simulations with SPC/E water and implicit water (Figure S10), the optimized force field of implicit water (Table S1), and the AAMD force field with SPC/E water (Table S2) (PDF)

AUTHOR INFORMATION

Corresponding Author
Narayana R. Aluru – Department of Mechanical Science and Engineering, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana–Champaign, Urbana, Illinois 61801, United States; orcid.org/0000-0002-9622-7837; Email: aluru@illinois.edu

Author
Yechan Noh – Department of Mechanical Science and Engineering, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana–Champaign, Urbana, Illinois 61801, United States; orcid.org/0000-0003-1688-4907

Complete contact information is available at: https://pubs.acs.org/10.1021/acsnano.0c04453

Notes
The authors declare no competing financial interest.

ACKNOWLEDGMENTS

We thank M. Herianian for valuable discussions on this work. The work on coarse-grained simulation of ion transport through nanopenes was supported by the Center for Enhanced Nanofluidic Transport (CENT), an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Basic Energy Sciences (DE-SC0019112). The other aspects of the work presented here were supported by the National Science Foundation under Grant Nos. 1545907, 1708852, 1720633, and 1921578. The computing power is provided by the Extreme Science and Engineering Discovery Environment (XSEDE) granted by National Science Foundation (NSF) Grant No. OCI-1053575 and Blue Waters supercomputing center, awarded by the state of Illinois and NSF, OCI-0725070, ACI-1238993.

REFERENCES

ACS Nano

www.acsnano.org

