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Abstract. Ionic channels, natural nanotubes found in biological cells, are interesting to the electronics community
because they display a range of device-like functions. The purpose of this paper is to illustrate how the solution
methodology, developed for 3-D drift-diffusion models of semiconductor devices, can be applied to ion permeation
in ionic channels. For this study we select the ompF porin channel, found in the membrane of the E. coli bacterium.
The self-consistent 3-D model is based on the simultaneous solution of Poisson’s equation, which captures Coulomb
interactions, and a current continuity equation for each ion species, describing permeation down an electrochemical
gradient. Water is treated as a uniform background medium with a specific dielectric constant. For demonstration,
a simple model is assumed for the mobility/diffusivity of each ionic species and we compute the current-voltage
relations for ompF porin in a wide range of conditions. Agreement with experimental measurements is surprisingly
good given that the model uses the ion diffusivity as the only calibrated parameter.
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1. Introduction a chain of amino acids folded in such a way that the
protein forms a nanoscopic water-filled tunnel control-
Ion channels are a class of proteins found in the mem- ling ion transport through the otherwise impermeable

branes of all biological cells. Each channel consists of membrane. An essential feature of proteins is that the
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side chains of the amino acids (hereafter referred to
as residues) are ionizable via the addition or subtrac-
tion of protons. The ionization state of a given residue
depends on the pH and salt concentration of the so-
lution in which the protein is immersed. Thus every
ion channel carries a strong and steeply varying dis-
tribution of permanent charge, which depends on the
particular combination of channel and prevalent phys-
iological conditions. The charge distribution residing
on the channel plays a critical role in determining the
permeation characteristics of the open channel.

From a physiological standpoint ion channels reg-
ulate the transport of ions in and out of the cell, and
in and out of compartments inside cells like mitochon-
dria and nuclei, thereby maintaining the correct inter-
nal ion composition that is crucial to cell survival and
function. Many channels have the ability to selectively
transmit or block a particular ion species and most ex-
hibit switching properties similar to electronic devices.
Malfunctioning channels cause or are associated with
many diseases, and a large number of drugs act di-
rectly or indirectly on channels (Ashcroft 1999). From
a device point of view, ion channels can be thought
of as elements in an electrical circuit, behaving like
resistors, diodes or batteries depending on the specific
channel and environmental factors. Some channels per-
form specialized functions resembling that of complex
electronic systems. Indeed, equivalent circuit models
have a long tradition in the theory of ion channels
(Jack, Noble and Tsien 1975, Eisenberg, Barcilon and
Mathias 1979).

The wide range of device-like functions exhibited
by ionic channels has generated a great deal of inter-
est in the engineering community. On the one hand,
it is appealing to exploit the functionality of natu-
rally occurring channels in traditional devices and cir-
cuits, e.g. for extreme miniaturization of sensors and
achieve single molecule detection. On the other hand,
a clear understanding of channel operation may pro-
vide a template for the design of functional elements
based on synthetic molecular systems or nanotubes.
The use of molecular elements for nanoscale integra-
tion would have the distinct advantage of perfect struc-
ture duplication and self-assembly, while the solid-
state nanoscale device counterparts tend to be strongly
affected by statistical fluctuations and defects. The
methods of molecular genetics and biology often al-
low the control of channel proteins with atomic res-
olution. By replacing or deleting one or more of the
amino acids many channels can be mutated, altering

the charge distribution along the channel (http://hoshi-
o.physiology.uiowa.edu/Mutations/Home.html). Engi-
neering channels with specific conductances and se-
lectivities is therefore conceivable. As device features
continue to shrink the possibility, or perhaps, necessity
of incorporating biological ion channels in the design
of novel bio-devices becomes increasingly apparent.

With the availability of standardized software and
computing power, Molecular Dynamics (MD) has be-
come the most widely employed tool for studying ion
dynamics in protein channels. Although MD simu-
lations can resolve channel physics in atomic detail,
the present computational requirements of such large-
scale simulations prohibit the direct calculation of
steady-state channel currents, particularly when chan-
nels are controlled by trace concentrations of ions or
co-factors (Hille 2001). Alternatively, drift-diffusion
theory, used widely in the engineering community
(Selberherr 1984) to describe charge transport in semi-
conductor devices and plasma discharges, can be used
to compute macroscopic current with a modest amount
of computational effort. Drift-diffusion theory sacri-
fices the resolution of molecular detail. However, when
used with an appropriate value of ion diffusivity it
has been found to describe ion permeation through
ion channels surprisingly well (Schuss, Nadler and
Eisenberg 2001, Kurnikova et al. 1999, Hollerbach
et al. 1999, Cardenas, Coalson and Kurnikova 2000,
Eisenberg 1996, 1999).

In this paper we a present a self-consistent three-
dimensional (3-D) drift-diffusion model of ion (K™
and CI™) permeation through the ompF porin channel,
a trimeric protein channel that spans the outer mem-
brane of the E. coli bacterium to allow the passive
diffusion of small hydrophilic solutes. ompF is one
of the few channels whose three-dimensional molec-
ular structure is well-known from X-ray crystallogra-
phy (Tieleman and Berendsen 1998, Weiss and Schulz
1992, Schirmer 1998, Cowan et al. 1992, Philippsen
et al. 2002). The porin molecule, shown in Fig. 1, is
comprised of three identical intertwined polypeptide
chains that form three separate identical pores through
which ions can flow. Porin has an unusually stable ar-
rangement that maintains its structural integrity well
beyond the normal (eukaryotic) physiological range
of salt concentrations, temperatures and applied volt-
ages. About halfway along each pore the channel has
a narrow constriction region, which is highly charged
due to the presence of three positively charged (R42,
R82, R132) and two negatively charged (D113, E117)
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Figure 1. Molecular structure of ompF, a porin channel found in the outer membrane of the E-coli bacterium. This projection along the length
of the channel shows the three-fold symmetry of the trimer. Several ionized residues in the constriction region of each pore are highlighted.

residues (Phale et al. 2001), as shown in Fig. 1. Here,
R stands for arginine and E for glutamate, both acidic
amino acid residues. The number identifies the location
of the residue in the linear sequence of amino acids that
form any protein. The arrangement of these charges
gives rise to a very strong electric field transverse to
the direction of ion flow, parallel to the plane of the
membrane. The function of this transverse field is not
known, although some of us believe it may be a bind-
ing site for a natural channel blocker, the identity of
which is not yet known. Whatever the function, how-
ever, recent simulations (Im and Roux 2001, Schirmer
and Phale 1999) show that it results in two separate
strands of anionic and cationic current. The net charge
residing on the entire porin molecule is equivalent to
approximately —30|e|, where e is the electron charge.

The ease with which ompF can be mutated, together
with its robust structure make ompF a good choice for

experimental and computational studies and a possi-
ble template upon which to base the design of future
biodevices. Here we use standard engineering Tech-
nology Computer Aided Design (TCAD) software to
study ion transport in ompF porin over a wide range
of conditions. In the following section we review drift-
diffusion transport theory and discuss it’s application
to ion permeation through protein channels. A brief
description of the TCAD software used to implement
the model is also given, together with a discussion of
the choice of physical parameters. In Section 3 we de-
scribe the experimental procedures followed in order
to measure current-voltage curves for ompF porin. In
Section 4 we compare those experimentally measured
current-voltage curves with results computed from a
self-consistent 3-D drift-diffusion model. The latter is
also used to examine the channel selectivity (i.e., the
preference for passing one ion species over another)
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and average ion concentration in different regions of
the channel. Section 5 summarizes the current work and
outlines our plans to extend the drift-diffusion model
to describe physical effects that are not adequately rep-
resented by the continuum theory in its present form.

2. Drift-Diffusion Transport Model

Drift-diffusion theory of charge transport is the cor-
nerstone of classical transport theory. Although it is
usual to compute the electric field self-consistently in
most semiconductor device applications by coupling
the transport equations with Poisson’s Equation, in
principle it is possible to use drift-diffusion theory with
a given background field. Since the concept of evalu-
ating the electrostatic potential self-consistently may
be relatively unfamiliar to the ion channel community,
we hereafter refer to drift-diffusion theory as Poisson
Drift-Diffusion (PDD) theory, to avoid confusion and
emphasize that the transport equations are coupled with
Poisson’s Equation. The theory is known as Poisson-
Nernst-Planck (PNP) theory in the ion channel litera-
ture, where it was introduced independently but much
later (Eisenberg 1996, Barcilon 1992, Barcilon, Chen
and Eisenberg 1992, Barcilon ef al. 1993). When fluxes
are all identically zero, the theory is identical to (non-
linear) Poisson Boltzmann theory used to describe pro-
teins (Eisenberg, Klosek and Schuss 1995, Antosiewicz
et al. 1995, Sharp and Honig 1990, Honig and Nichols
1995, Warshel and Russell 1984). The drift-diffusion
equation for the current density may be obtained from
the lowest order moment of the Boltzmann equation
(Ferry 1991), under the assumption that the distribu-
tion function is close to equilibrium. A consequence of
this assumption is that in the diffusive term, obtained
from moment integration of Boltzmann equation, one
may use the average thermal energy for the carriers at
the given temperature to evaluate the average of the
square velocity, (v?), which can only be known if the
distribution function is accessible. A discussion on the
implications of assuming a near-equilibrium distribu-
tion function in the model hierarchy in semiconduc-
tor device simulation can be found in Ravaioli (1998).
The drift-diffusion model is adequate not only in con-
ditions of low bias voltage, but also when scattering
events thermalize the carriers very quickly towards an
equilibrium distribution, transferring to the environ-
ment the excess energy acquired by the carriers under
the influence of the accelerating fields. Charged ionic

carriers in a solution interact very strongly with wa-
ter molecules. A model that treats ions as a plasma,
moving in a continuum water background, can be de-
scribed by the drift-diffusion set of equations presented
later in this section, provided that the relaxation time
for the charged ions in water is known, in order to de-
fine a mobility and a diffusivity (Chen er al. 1995).
The tradition of device simulation, which spans half
a century beginning with Shockley’s seminal work on
the semiconductor equations (Shockley 1950), has also
shown that drift-diffusion theory can be extended suc-
cessfully to carrier flow in conditions where mobil-
ity and diffusivity are space-dependent properties, as
long as a local equilibrium is maintained by scattering,
even if the device is subject to relatively large fields
and current flow. The mathematical convenience of the
drift-diffusion model has also motivated further empir-
ical extensions where non-equilibrium conditions and
heating of the carrier ensemble are established in the
device (Selberherr 1984, Hess 2000, Lundstrom 1992).
In such conditions, mobility and diffusivity become
fitting parameters for the flow to match experimental
current values, while the self-consistent density and po-
tential distribution may be significantly deviating from
the actual ones. This condition is not a concern for
ionic currents in channels due to the high rate of ther-
malizing collisions with water. The use of a continuum
conduction model raises instead some concerns when
it is applied to flow in openings of restricted dimen-
sionality. This may be the case in small ionic channels,
when the actual diameter of the ion is comparable to
the dimensions of the pore. Nonetheless, under these
circumstances the continuum Poisson Drift-Diffusion
model remains a useful tool to represent globally the
input-output characteristics of the system, by formulat-
ing an equivalent flow with a fitted mobility in the con-
stricted region, as long as one is aware that microscopic
quantities like charge density may not be completely
physical in the constricted region. In large measure
Poisson Drift-Diffusion depends on conservation laws
and simple constitutive equations. As long as these re-
main true in a certain domain of experimental and bio-
logical interest, the equations should be useful; indeed,
they should capture the essence of what is happening,
albeit perhaps with unphysical parameters. These lim-
itations may be overcome, in part, by formulating cor-
rections that take into account finite size of the carriers.
It should clearly be noted that Poisson Drift-Diffusion
automatically satisfies conservation and macroscopic
constitutive laws, as does Monte Carlo simulations of



computational physics. On the other hand, molecu-
lar dynamics simulations in the tradition of protein
chemistry do not, since they cannot predict current
and therefore cannot satisfy Ohm’s law or Fick’s law
(Eisenberg 1999), the latter invariably requiring ther-
mostats to supply or remove kinetic energy every 10—
100 femtoseconds.

2.1. Theory

The electrostatic potential ¢ is described by Poisson’s
Equation,

V- (eV9) = —(pfixed + o+ + p-) 6]

where ¢ is the dielectric constant and pfixed, 0+ and p—
are the densities of fixed charge residing on the protein,
and of mobile K™ ions and CI~ ions, respectively. The
current density ji flowing down an electrochemical
gradient is given by,

Jt = —(D+/kT)pL Vs 2

where D is the diffusion coefficient and ¥ is the total
electrochemical potential of each species, given by

Ve=q¢p £kTInpy + ¢y

The first two components of ¥, describe the ideal
chemical potential for a system of point charges. The
last term ¥, known as the “excess” chemical poten-
tial, accounts for departures from ideality due to the fi-
nite volume occupied by the ions (Davis 1996, Barthel,
Krienke and Kunz 1998, Waisman and Lebowitz
1972a, 1972b, Durand-Vidal, Simonin and Turq 2000,
Simonin and Blum 1996, Simonin, Bernard and Blum
1998, 1999, Simonin, Blum and Turq 1996, Simonin
1997, Nonner et al. 2001, Nonner, Catacuzzeno and
Eisenberg 2000). Since most ion channels are typically
only 4-8 A wide while the permeating ions are 2—4
A in diameter, the non-zero ion volume is likely to
be important. Nonner, Gillespie and Eisenberg (2002)
have recently combined a treatment of excess chemical
potential using Density Functional Theory with one-
dimensional drift-diffusion transport theory to describe
ion permeation and selectivity for a calcium channel.
Their results show that the finite volume of the ions is
enough to account for most of the selectivity proper-
ties of channels, if they are computed at equilibrium
with standard methods of modern physical chemistry.
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The work reported here was done at the same time as
the work of Gillespie and Nonner and so finite volume
effects will have to be considered in a later publication.

Upon setting ¢§* = 0 the drift-diffusion Eq. (2)
reduces to its more usual form

Jt = —(xp+Ve £ D1Vpy)

where the ion mobility . is related to the diffusion
coefficient via the Einstein relations. Conservation of
charge is enforced via the continuity equation

Jx+ o + (3

where S. captures the details of ion binding and other
chemical phenomena that may populate or deplete the
ion densities. We do not consider such phenomena in
this present work and set S; = 0.

The channel system contains a single porin molecule
in situ in a lipid bilayer (membrane), immersed in
an aqueous bath of KCI. The three pores provide an
aqueous pathway for Kt and Cl~ ions to cross the bi-
layer. Experimentally different salt concentrations are
set on either side of the bilayer (hereafter referred to
as Ciefp and Ciigp). Electrodes are immersed in the
baths to maintain a fixed bias voltage across the chan-
nel/membrane system. We seek a steady-state solution
for ¢, p; and p_ that simultaneously satisfies the cou-
pled partial differential equations (PDEs) (1)—(3) sub-
ject to the following Dirichlet boundary conditions (4)
enforced at the electrodes.

¢r1ght _ ¢lefl — Vbias
P .right = Cright (€]

P+ left = Cleft

2.2. The PROPHET Simulator

Equations (1)—(4) are a set of highly nonlinear, cou-
pled PDEs, and are notoriously difficult to solve nu-
merically, even for relatively simple systems. Due to
their extensive application in the transport theory of
semiconductor devices much attention has been paid
to developing robust and stable numerical schemes for
solving these equations in time and three-dimensional
space (Selberherr 1984, Bank, Rose and Fichtner 1983,
Bank et al. 1990). Well-tested packages for discretiz-
ing and solving the Egs. (1)—(4) on two-dimensional
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(2D) and three-dimensional (3-D) meshes in feasi-
ble runtimes on workstations are now readily avail-
able (http://www.ise.ch, http://www.synopsys.com,
http://www.silvaco.com). However, most of these
solvers are oriented toward the simulation of semi-
conductor devices for which the system geometry is
relatively simple. Application of “off-the-shelf” pack-
ages to geometrically complex systems such as those
found in ion channels is generally not possible since the
latter requires a detailed representation of the channel
geometry.

The model described above was implemented
using the PROPHET simulator (http://www-tcad.
stanford.edu/~prophet/), a computational platform
originally developed at Lucent Technologies for semi-
conductor process modeling, and currently being ex-
tended to include a variety of device simulation models
at Stanford University. The PROPHET simulator pro-
vides a convenient scripting framework for defining,
discretizing and solving an arbitrary system of PDEs.
Physical properties such as dielectric constant and mo-
bility can be assigned to the different regions of the
computational domain at run-time.

Equations (1)—(4) are readily constructed using ex-
isting PROPHET operators, and discretized using fi-
nite volume methods. The resulting system of non-
linear algebraic equations is then solved by Newton’s
method, using sparse iterative techniques (Selberherr
1984). In contrast to most commercial PDE solvers,
PROPHET has the flexibility of being able to handle
arbitrary geometries such as those encountered in bio-
logical systems. A customized mesh, shown in Fig. 2,
was created for the ompF molecular structure, defining
three regions—protein, membrane and electrolyte—on
a 1.5 A uniform rectilinear mesh. The protein and mem-
brane are assigned relative dielectric constants of 20
and 2 respectively, and the electrolyte is assigned a
value of 80. There are two electrodes placed at oppo-
site ends of the domain approximately 15 A from the
ends of the porin molecule as shown.

2.3.  Physical Parameters

The density of fixed charge on the protein, pgxeq Was
modeled by associating a fractional point charge (in
units of |e|) to each atom, and then interpolating the
charge to the mesh. The charges residing on isolated
amino acids in neutral electrolyte solutions can be cal-
culated using ab initio quantum chemistry codes. Here
we have used the tabulated OPLS partial charges, a
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Figure2. PROPHET mesh representation of the ompF trimer in situ
in a membrane, immersed in an electrolyte solution (potassium chlo-
ride) showing (a) longitudinal and (b) cross-sectional slices through
the 3-D computational domain generated on a uniform rectilinear
erid (1.5 A mesh size). Electrodes placed at both ends of the domain
maintain a fixed bias across the channel/membrane system.

force field used widely in MD simulations of pro-
tein molecules (Jorgensen 1998, Jorgensen and Tirado-
Rives 1988), with modifications to account for the di-
electric environment, proximity of neighboring amino
acids in the folded of the protein, and electrolyte con-
centration (van der Straaten et al. 2002, Antosiewicz,
McCammon and Gilson 1994).

The diffusion coefficient for ions freely diffusing
in bulk electrolyte transport can be inferred from ex-
periments (Tyrrell and Harris 1984, Newman 1991,
Harned and Owen 1958, Robinson and Stokes 1959,
Conway 1969, Zematis et al. 1986) and is well doc-
umented in the literature (Barthel, Krienke and Kunz
1998, Durand-Vidal, Simonin and Turq 2000, Newman
1991, Robinson and Stokes 1959, Conway 1969,
Zematis et al. 1986, Conway, Bockris and Yaeger 1983,
Schmickler 1996, Berry, Rice and Ross 2000, Barthel,



Buchner and Miinsterer 1995). In the confined vol-
umes of ionic channels, where additional sources of
friction (Kurnikova, Waldeck and Coalson 1996, Nee
and Zwanzig 1970, Wolynes 1980, Bagchi and Biswas
1998) will also restrict ion motion, the diffusion coeffi-
cient is expected to differ from bulk values, and cannot
be obtained by experimental means. Recent MD sim-
ulations of K* and CI~ ions inside the porin channel
indicate that the diffusion coefficient is substantially
reduced from its bulk (van der Straaten et al. 2002).
However, physical analysis of the diffusion coefficient,
even in homogeneous ionic solutions, presents major
difficulties for MD (Evans and Morriss 1990, Ciccotti
and Hoover 1990, Hoover 1986, 1991, Alder 1992,
Mareschal and Holian 1992). In the inhomogeneous
environment of an ion channel, where ion transport is
governed by atomic motions occurring over extremely
disparate time-scales, the determination of the diffu-
sion coefficient from MD poses considerable difficul-
ties in principle as well as practice: it is possible that
estimating an effective diffusion coefficient requires a
simulation in atomic detail on the time scale of exper-
imental measurements (i.e., milliseconds). Such sim-
ulations are not likely to become practical in the near
future, particularly if they depend in an important way
on the trace concentrations of ions.

For this reason we have adopted an engineering ap-
proach, assuming a spatially uniform diffusion coeffi-
cient. Since we compute the current-voltage relations
for potassium chloride KCl, for which the diffusion
coefficients in bulk electrolyte are approximately the
same for both species (D4 = 2.00 x 107 em2s~ !,
Do = 1.98 x 107 cm?s™! (Lide 1994)), we as-
sume the same constant diffusion coefficient for each
ion species D = D_ = D. In that case the com-
puted current scales linearly with the diffusion coeffi-
cient (Eq. (2)), and can be adjusted to give the best fit
to the measured curves, yielding an appropriate value
for the effective diffusion coefficient. The simulations
presented here with the choice of diffusivities illus-
trated above should be taken mainly as demonstration
of the TCAD approach with PROPHET. The use of a
best fit for the diffusivities follows a purely engineer-
ing approach. From a physical point of view, each ionic
species may be characterized by its own diffusivity that
is spatially dependent inside the channel. The simple
choice of uniform diffusivity fit followed in this pa-
per does not affect the generality and robustness of the
solution approach. Work is in progress to determine
space-dependent diffusivities for the porin channel us-
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ing Molecular Dynamics simulations, and we plan to
report on these results later.

3. Experiments

In this section we describe the experimental proto-
cols followed in order to record single-channel current-
voltage curves for ompF porin, which were used to cal-
ibrate the value of the effective diffusion coefficient.
The importance of using a single porin molecule for
these measurements cannot be overstated: measure-
ments from an ensemble of channels are difficult to
interpret because they include channels that insert with
opposite orientations. The measured properties depend
on the orientation (because the molecule is asymmet-
rical) and the orientation of insertion is not the same
under different experimental conditions (because the
charge density on the protein which helps control in-
sertion is asymmetrical and varies with experimental
conditions). Thus, measurements must be made on sin-
gle trimers if they are to be reliable.

3.1. Porin

The porin protein ompF was provided in a solution con-
taining 100 mM KCl, 1 mM EDTA, 20 mM NaH, PO,
and 1% detergent n-octyl-polyoxyethylene (O-POE:
product number P-1140, Bachem Bioscience Inc., King
of Prussia, PA 19406) and then diluted into a 100 mM
KCI solution containing 1% O-POE. Solutions were
buffered with 20 mM HEPES (pKa = 7.55) to pH 7.4.
Porin molecules were reconstituted one at a time into
a painted planar bilayer stretched over a 150 um aper-
ture, area ~0.02 mm?, separating 4 ml of salt solu-
tion in a grounded bilayer chamber and 3 ml of salt
solution in a Delrin cup. Ag/AgCl electrodes were
connected to the bathing solution by 3 M KCl-3%
agar bridges to minimize liquid junction potentials. To
minimize electrical and mechanical artifact, solutions
were stirred with a dc powered magnetic stirrer (Cole
Palmer, Model 4804, using a micro-stirring bar) and
changed in the grounded bilayer chamber (held at zero
potential) using two peristaltic pumps with constant
flow.

3.2. Bilayers

Bilayers were made from lipids phosphatidyl-
ethanolamine (#840022 from Avanti Polar Lipids,
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Alabaster, AL 35007) and phosphatidyl-choline
(#840053) dissolved in chloroform. Lipids (PE:PC 4:1)
were evaporated with argon, dissolved in n-Decane
(SigmaD4384) ata concentration of 10 mg/ml and used
within 2 weeks. Otherwise, insertion was rarely ob-
served. The resistance from the ground chamber to the
voltage bath chamber was ~50-100 GS2. Experiments
were started with 0.1 M, 0.25 M, or 0.5 M KCl salt so-
lutions on both sides of the bilayer. Porin (0.1 ng) was
then placed in the 4 ml of the grounded chamber and
insertion of a single trimer was typically observed after
5-10 minutes of stirring. The solution on the grounded
side was changed after a trimer inserted. Single chan-
nel currents were recorded from the same porin trimer
with a range (0.1 M to 3 M KClI) of solutions on the
grounded side.

3.3.  Current Measurements

With these precautions, it was possible to measure sin-
gle channel currents in the same porin trimer in many
solutions: recordings were made from the same porin
trimer with 0.1, 0.25, 0.5, 1, and 3 M KCI solutions on
the grounded side. The solution in the voltage cham-
ber was not changed when recording from one porin
trimer, although, of course, that solution was different
in different experiments, i.e., 0.1, 0.25 and 0.5 M. Cur-
rent was recorded in response to step or ramp poten-
tials, with current-voltage characteristics being mea-
sured with ramps. The gating processes that open and
close porin were not studied. Figure 3 shows a typ-
ical histogram of the currents through a single porin
molecule with 1 M solutions of KCl on either side of
the bilayer under an applied voltage of —100 mV. Cur-
rent peaks occurring at regular intervals indicate the
number of conducting pores, the largest current cor-
responding to all three pores being in the open state,
for example. Figure 4 shows the traces of current as
a function of time after bias voltages of (a) +80 mV
and (b) —80 mV are applied. The four evenly spaces
levels of current correspond to all three pores closed
(zero current), and one, two or all three pores open.

4. Simulations
4.1. Nernst Potential

The net flux of particles in a system that has reached
thermodynamic equilibrium is zero. Simulations of
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Figure 3. The amplitude histogram of the currents through a single
trimer of ompF reconstituted into a lipid bilayer, in a symmetric 1 M
KCl solution under —100 mV applied voltage. The four main peaks
at 0 + 2.5 pA (Baseline), 128 3.7 pA, 250 + 2.4 pA and 370 £
1.0 pA correspond to current flowing through none, one, two and
three pores. In addition the graph exhibits a smaller peak at 10 £
3.8 pA (pedestal current), the origin of which is not yet known. The
conductances of the individual pores are similar at about 1.2 nS while
the conductance of the pedestal current is about 10 times smaller. The
seal resistance was 20 GS2.

ion channels and proteins are almost always done
at equilibrium (Tieleman and Berendsen 1998, Roux
and Karplus 1991a, 1991b, Roux 1999, Tieleman
et al. 2001). However, the primary function of ion
channels—the translocation of ions—takes place only
when the system is driven away from equilibrium. An
electrochemical gradient must be present to cause a net
flow of ions through the channel. The Nernst Potential
is the holding potential required to balance a density
gradient across a barrier having an aperture that allows
only one species of ion to flow, such that the net flow
of charge is zero (Newman 1991)

kT Cle
WNemst = —— In < Lot ) (5)
q Cright

where Cep and Ciigy are the concentrations of the per-
meable ion on either side of the barrier. The PROPHET
package has been extensively used in process and de-
vice simulation, and its accuracy has been proven by
solving a range of problems in the semiconductor area.
We nonetheless verify the accuracy of PROPHET by
computing the Nernst Potential for a simple three-
dimensional barrier structure, shown in Fig. 5. The
fixed charge pgxeq Was set to zero and Egs. (1)—(4)
were solved for a range of concentration gradients
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Figure 4. Current through a single trimer of ompF as a function
of time under bias voltages of (a) +80 mV and (b) —80 mV. In
addition to the four main conductance states (none, one, two and
three pores) these current traces show evidence of many short-lived
subconductance states.
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Figure 5. Barrier structure used to compute the Nernst potential.
The width W, depth W and length L of the three-dimensional sim-
ulation box were all set to 96 A.
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Table 1. Nernst potential for a barrier structure.

WNermst (mV) WNerst (mV)

/L w/W Cignt/ Cueft (Eq.(5))  (PROPHET)
12 1/4 2.5 237 -237
5 —41.6 —41.6
10 -59.5 -59.3
12 18 25 -23.7 -23.8
5 —41.6 —41.7
10 -59.5 -59.1
4 18 25 -23.7 —-23.7
5 —41.6 —41.6
10 -59.5 —-59.2

(Ciett/ Crignt), applied biases, barrier thickness / and
square aperture widths w. The KCI concentration on the
left side of the barrier was held fixed at Cie = 0.1 M
KCI while the concentration on the right side was var-
ied between 0.25 and 1 M. K* was chosen to be the
permeable ion by suppressing the C1~ diffusivity by
a factor of 103 relative to the K* diffusivity. For all
combinations of conditions the PROPHET simulator
matches the theoretical value of the Nernst Potential
given by Eq. (5) to within 0.5%. Table 1 summarizes
the results.

4.2.  Current-Voltage Relations

After verifying the Nernst potential, PROPHET was
used to solve the coupled system (1)—(4) in the porin
channel for various salt concentrations and applied
biases corresponding to experimental measurements
described in Section 3. To provide suitable initial con-
ditions, PROPHET was used to first solve the non-
linear Poisson equation (referred to as the Poisson-
Boltzmann Equation in ion channel literature) under
conditions of zero concentration gradient (symmetric
bath concentrations Cieii = Crigne). The standard con-
tinuation method is adopted, where the current-voltage
(I-V) curves are built by generating a sequence of so-
lutions with slightly increased bias each time, with the
previous solution as initial condition. The method of
continuation was applied to obtain the steady-state ion
densities and potential profiles for asymmetric solu-
tions (Cieft # Crignt) under zero applied bias. Using the
zero-bias solutions as an initial condition the full sys-
tem (1)—(4) was solved for each set of bath concentra-
tions, using continuation in the applied potential over
a range values of physiological interest (£200 mV).
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()

(b)

Figure 6. Steady state (a) KT ion density and (b) C1* ion density
on a two-dimensional slice through the computational domain for a
0.1 M symmetric (Clefe = Cright) KClunder an applied bias of 200 mV.

Typical performance on the NCSA SGI Origin 2000
allows 15 current-voltage curves to be calculated in
approximately 36 CPU hours.

Figure 6 shows the steady state ion densities, (a)
K™ ion density and (b) Cl~ ion density, on a 2D slice
intersecting one of the three pores. A bias voltage
Vbias = 200 mV was applied across the electrodes. The
concentration of KCl1 electrolyte in the baths on either
side of the membrane was held at Ciefy = Crigne = 0.1 M
(1 M = 1000N4, m—3, where Ny = 6.02 x 10%° is
Avogadro’s number). As expected, ions accumulate in
regions of strong fixed charge residing on the amino
acids.

Figure 7 compares the experimentally measured [-V
curves obtained in symmetric solutions of (a) 0.1 M, (b)

0.25M, (c) 0.5 M and (d) 1 M KCl with those computed
from the drift-diffusion model. At lower salt concen-
trations (0.1 M and 0.25 M) the measured I-V curves,
shown by the unbroken line, exhibit a significant de-
parture from linearity and an asymmetry with respect
to the applied bias. This weakly rectifying behavior is
also evident from the simulation results (shown by sym-
bols), and reflects the longitudinal asymmetry inherent
in the distribution of fixed charges lining the channel.
The agreement between experiment and simulation is
reasonable, considering that the latter were computed
with spatially uniform diffusion coefficients. As the salt
concentration is increased, the non-linearity disappears
suggesting more effective electrostatic shielding of the
charges lining the pore of the channel. At higher salt
concentrations (0.5 M and 1 M KCl), the computed [-V
curves fit the experiment very well.

Separate fits were performed for each set of concen-
trations shown in Fig. 7, giving effective diffusion coef-
ficients in the range D = (0.58-0.67) x 107 ecm?s .
These values are comparable to the average diffusion
coefficient inside the channel obtained from Molecular
Dynamics simulations (van der Straaten et al. 2002).
Unlike the free diffusion of ions in bulk electrolyte so-
lution, ionic transport inside the restricted and highly
charged volume of an ion channel is likely to be a dy-
namic coupled function of the protein and its environ-
ment. As such it is hardly surprising that the effective
diffusion coefficient varies with salt concentration. In
fact, Schirmer and Phale (1999) have shown that the
pathways for diffusion of anions and cations in ompF
are separate. It would be remarkable if this bifurcation
in pathways did not result in a concentration dependent
diffusion coefficient. For comparison, the same fitting
procedure was applied to the entire data set covering
all four concentrations, yielding a single effective dif-
fusion coefficient D = 0.63 x 1075 cm?s . Again,
the agreement between the experimental and computed
I-V curves, shown in Fig. 8, is reasonable.

The role of the fixed charge lining the pore of the
channel in determining the channel’s I-V characteris-
tic is clearly demonstrated in Fig. 9, which compares
the I-V curves for symmetric solutions of 0.1 M KCl
computed with (solid lines, filled symbols) and with-
out (dashed lines, open symbols) the fixed charge. The
individual cationic and anionic, and the net current is
shown for each case. There are three specific observa-
tions to be made from Fig. 9. Firstly, in the absence of
permanent fixed charge on the protein, the I-V curve
exhibits a bowing and the total current is symmetric
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(c)0.5M (A D = 0.58 x 1077 cm®s™ ") and (d) 1 M (#D = 0.64 x 1075 cm?s~!) KCI. Experimentally measured curves, indicated by
the continuous line, are shown for comparison. The diffusion coefficient that provides the best fit to the measured I-V curve was determined

separately for each concentration.
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Figure 8. Measured and computed I-V curves in symmetric solutions (a) 0.1 M (), (b) 0.25 M (W), (c) 0.5 M (A) and (d) 1 M (#) KCI. The
symbols represent the I-V curves computed using a single value of diffusion coefficient (D = 0.63 x 107> cm? s~1) that gives the best fit to the

entire set of measured data.

with respect to the magnitude of the applied bias. Sec-
ondly, in the absence of fixed charge the model pre-
dicts a slight selectivity that depends on the polarity
of the applied bias. For positive bias the channel fa-
vors cationic current, while for negative bias it favors
anionic current. The individual cation and anion I-V
curves are slightly rectifying but add to yield a total

current that is still symmetric. This behavior, which is
contrary to what is observed for a simple aperture, sug-
gests that the highly irregular channel geometry favors
ion flow in a specific direction. With reference to Fig. 6
this preferential flow is from the right electrode, held
at ground potential, to the left electrode where the bias
is applied. Lastly, when the non-uniform permanent
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Figure 9. Computed I-V curves for symmetric solutions of 0.1 M KCI computed with (solid lines, filled symbols) and without (dashed lines,
open symbols) the fixed charge. The individual K* (M) and C1~ (A), and the net current (®) is shown for each case.

fixed charge of approximately —30|e|, is included in
the model the channel now becomes significantly se-
lective for cation current irrespective of the bias po-
larity. The combination of the geometry-induced se-
lectivity and that induced by the fixed charged would
explain to some extent the mild rectifying behavior in
the complete I-V curve. We conclude that it is impor-
tant to use a realistic three-dimensional channel ge-
ometry to capture the details of the transport in ionic
channels.

It is very important to study asymmetric solutions
because the I-V curves predicted by traditional barrier
and diffusion models, which do not compute the local
electric field in a self-consistent manner, are strikingly
different from those predicted by models that compute
the electric field consistently (Hille 2001, Eisenberg
1996, 1999, Chen and Eisenberg 1993). Figure 10(a)-
(c) compare the experimental I-V curves measured in
asymmetric concentrations of KCl with those com-
puted from the drift-diffusion model. The discontinu-
ities evident in some of the experimental data indicate
that the channel has closed spontaneously over that
particular range of applied voltages. Each figure cor-
responds to experimental conditions in which the con-
centration of KCl in one bath, Cif, is held constant
while the concentration in the other, Cygy, is varied.
For each value of Ci.g the spread in effective diffusion
coefficients is fairly small (within 4 to 8% of the av-
erage). Interestingly, the value of diffusion coefficient
that provides the best fit to the measured curve is not

the same when the bath concentrations are swapped.
That is, the effective diffusion coefficient depends on
the alignment of the porin molecule with respect to the
baths, e.g., for Ciefi : Crighy = 100 mM : 250 mM we
find D = 0.64 x 1073 cm? s~! while for Cieg : Cright =
250 mM : 100 mM we find D = 0.74 x 1075 cm? s~ .
This result is hardly surprising considering the evident
asymmetry of the molecule but it has the unfortunate
effect of making measurements of properties of ensem-
bles of channels difficult to interpret.

4.3.  Channel Selectivity

Porin is known to be moderately selective for cations
(over anions) (Schirmer 1998, Im and Roux 2001, Saint
et al. 1996a, 1996b, Schindler and Rosenbusch 1978,
Mauro, Blake and Labarca 1988, Young et al. 1983).
This preference for cations may be attributed in most
part to the overall negative charge residing on the pro-
tein. Here we use the fraction of total current carried
by K* ions, computed with the drift-diffusion model,
as a measure of the channel selectivity for cations over
anions—alternative measures of channel selectivity are
discussed in Gillespie and Eisenberg (2002). Figure 11
shows the fractional K™ current as a function of salt
concentration at a fixed applied bias of 100 mV. Athigh
salt concentrations, where Coulombic shielding of the
fixed charge is likely to be stronger (Schirmer 1998, Im
and Roux 2001, Saint et al. 1996a, 1996b, Schindler
and Rosenbusch 1978), simulations predict a very weak
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Figure 10. Experimentally measured and computed I-V curves obtained in asymmetric solutions of KCI, for salt concentrations in the left bath

of (a) 100 mM, (b) 250 mM and (c) 500 mM.
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Figure 11. KT selectivity, defined here as the fraction of total current carried by K™ ions, as function of KCI concentration, at a fixed applied
voltage of 100 mV.
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Figure 12. KT selectivity as a function of applied voltage, for various of symmetric concentrations of KCI.

preference for cationic current, with roughly 54% of on the protein are screened by the mobile charge inside
the current being carried by K* ions in 3 M KCI. As the pore. Electrostatic screening effects alone do not
the salt concentration is reduced, the channel becomes determine channel selectivity. There are issues related
increasingly selective for cationic current, with more to the finite ion size that have been shown to dominate
than 80% of the total current being carried by K™ ions the selectivity in some channels. Volume exclusion ef-
at 0.1 M KCIl. However, when simulations are con- fects are not addressed in the present model, which
ducted again with the fixed charge removed to test its treats the ions as a charged fluid.

effect, the fractional K™ current in 0.1 M KCl drops to Figure 12 shows the computed fractional K+ current
about 50%, confirming that the channel selectivity is as a function of applied voltage, for various symmetric

strongly linked to the degree to which the fixed charges bath concentrations. At low salt concentrations (0.1 M)
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Figure 13. Equilibrium (no applied voltage) ion occupancy as a function of axial position along the pore for (a) K* and (b) Cl~ for symmetric

bath concentrations of 0.1 M, 0.25 M, 0.5 M, 1 M and 3 M KCI.

the fractional K* current is weakly dependent on ap-
plied voltage, decreasing slightly as the magnitude of
the applied bias increases. As the bath concentration
is increased, the fraction of current carried by K* ions
decreases and the mild dependence on applied bias dis-
appears altogether.

4.4.  Ion Occupancy

The ion occupancy—the integral of the ion
concentration—in a given region of the channel

represents the average number of ions likely to be
found there at any given time. Figure 13 shows (a) K+
and (b) CI™ ion occupancy profiles in the direction
normal to the lipid membrane and electrodes, under
conditions of zero bias, for the same five symmetric
KCI bath concentrations. The occupancy exhibits a
similar profile at all concentrations. Near the mouths
of the channel, the K*, and to a lesser extent, the
CI™ occupancies increase from their values in the
bulk solution. Inside the channel the K* occupancy
is greater than in the bulk electrolyte surrounding
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Figure 15. Net K™ and C1~ occupancy in the pore constriction (z = 30-40 A) as a function of symmetric KCI bath concentration.

the channel, except at very high (3 M) salt con-
centration, presumably because of the electrostatic
attraction of the K™ to the negative charge residing
on the channel. In contrast, the Cl~ occupancy
inside the channel is always lower than in the bulk
electrolyte.

This preference for cations over anions is even
clearer in Figs. 14 and 15, which show respectively
the total occupancy for a single pore, and the occu-
pancy in the constriction region, for the same range of
bath concentrations.

5. Conclusion

We have demonstrated that the continuum Poisson
Drift-Diffusion model provides a useful tool for study-
ing ion transport in open protein channel systems over
time scales that cannot be resolved practically by de-
tailed molecular dynamics or quantum approaches. Us-
ing ion diffusivity as the only adjustable parameter,
we have computed the open channel current-voltage
characteristics for a single ompF porin molecule, for
a wide range of symmetric and asymmetric solutions



of KCI. At low salt concentrations the comparison be-
tween measured and computed I-V curves is reasonably
good; the simulations reveal the rectifying properties of
the channel that are also seen experimentally. At higher
salt concentrations where the I-V characteristics are
more linear the computed curves match the measured
curves very well. In all cases, the calibrated K+ and C1™
ion diffusivities agree to within a factor of 3 with the ex-
perimentally determined values for bulk salt solution.

The usefulness of the continuum Poisson Drift-
Diffusion formalism lies in its ability to reproduce the
input-output characteristics of the system, using a fit-
ted diffusivity. For a single isolated channel system, a
spatially uniform diffusivity is adequate for such pur-
poses. However, for multiple channel systems coupled
together the ion diffusivity in the bath solutions con-
necting the channels must be unique. Given the re-
cent evidence for two separate permeation pathways
for cationic and anionic current (Im and Roux 2001,
Schirmer and Phale 1999) it is unlikely that K™ and
CI~ will have the same profile of diffusion coefficient,
despite the fact that their values in bulk solution agree
to within a few percent. Work is currently in progress
to develop a position-dependent model for the ion dif-
fusivity, inferred from the ion mean square deviation
correlation function obtained from Molecular Dynam-
ics simulations. The goal is to determine a diffusivity
profile for each ionic species that returns to the correct
bulk value in the baths and yields the measured channel
I-V characteristics.

In addition, Poisson Drift-Diffusion theory, as it is
presented here, does not include any representation of
the finite ion volume, treating the ions as though they
occupy a negligible fraction of the total volume of the
system. The use of a continuum model to describe ion
flow in regions where the ion diameter is comparable
with the pore dimensions requires special care how-
ever, since the ion volume and the charge distribution
introduce entropic and electrostatic effects that are not
accounted for in the present formalism. Extension of
the drift-diffusion model to include the effect of the
finite ion size by introducing a correction to the total
electrochemical potential of the system is the subject
of ongoing work.
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